백준 15711: 환상의 짝꿍
두 수의 합이 다른 두 소수의 합으로 표현할 수 있는가에 대한 문제다. 문제에서 A와 B의 범위는 1 이상이므로 합은 2, 3, 4, ...로 나올 수 있다. 이때 A+B가 2 또는 3이라면) 가장 작은 소수 2를 뺐을 때 나머지 0 또는 1이 소수가 아니므로 두 소수의 합으로 표현할 수 없다. A+B가 4 이상의 짝수라면) 골드바흐의 추측*에 의해 '어지간한 수'까지는 두 소수의 합으로 표현할 수 있다. * 수학적으로 엄밀한 증명이 이뤄지지는 않았지만, 우리 문제 범위에서는 영향이 없다. A+B가 4 이상의 홀수라면) 2로 뺀 A+B-2가 소수라면 두 소수의 합으로 표현할 수 있고, A+B-2가 소수가 아니라면 두 소수의 합으로 표현할 수 없다. 예를 들어 19는 2+17의 쌍으로 표현할 수 있다. 하..
간단 문제 풀이
2021. 9. 30. 21:11
반응형
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- rule_of_three
- OOP
- nodeal
- c++ 상속
- CM11
- inline class
- Kotlin
- PipelineContext
- 객체지향
- dokdo project
- c++ struct
- d802
- cyanogenmod
- Java
- dokdo 4.0.3
- LG
- f320k
- g2 korea
- f320s
- vector
- C++
- c++11
- rule_of_five
- C
- 포인터
- G2
- linaro
- C++ 업캐스팅
- dokdo-project
- CM10.2
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |||
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| 26 | 27 | 28 | 29 | 30 |
글 보관함
